Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ECS Electrochemistry...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ECS Electrochemistry Letters
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ECS Electrochemistry Letters
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers

Authors: Sánchez Tovar, Rita|||0000-0002-6811-5854; Lee, Kiyoung; Garcia-Anton, Jose|||0000-0002-0289-1324; Schmuki, Patrik;

Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers

Abstract

In the present work we grow TiO2 nanosponge structures by anodizing Ti in a glycerol/water/NH4F electrolyte to thickness of some mu m. We evaluate the photoelectrochemical behavior (bandgap, photocurrent-voltage characteristics) in presence and absence of methanol. Methanol drastically affects the photoresponse (due to hole capture and current doubling). The optimum thickness for photoelectrochemical applications of these nanostructures is dependent on the excitation wavelength. For applications such as solar light water splitting, anodic sponge structure of approximate to 500 nm thickness can be beneficially used to increase the photoresponse compared to compact TiO2 layers.

The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation FPU grant given to Rita Sanchez Tovar, as well as DFG, and the DFG Cluster of Excellence (EAM) at the University of Erlangen-Nuremberg for financial support.

Keywords

NANOTUBES, PHOTOCATALYSIS, BREAKDOWN, FILMS, INGENIERIA QUIMICA

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 36
    download downloads 127
  • 36
    views
    127
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
9
Average
Average
Average
36
127
Green
hybrid