Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ECS Transactions
Article . 2014 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ECS Meeting Abstracts
Article . 2014 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heteroleptic Precursors for Atomic Layer Deposition

Authors: Timothee Blanquart; Jaakko Niinistö; Markku Leskelä; Mikko Ritala; Sanni Seppälä;

Heteroleptic Precursors for Atomic Layer Deposition

Abstract

As the atomic layer deposition (ALD) method is based on sequential, self-limiting surface reactions the precursor chemistry is the key to a successful processing of conformal high quality thin films. ALD precursor chemistry has traditionally been based on homoleptic compounds such as, but not limited to, metal halides, alkylamides and alkoxides. However, these precursors sometimes have drawbacks such as possible halide contamination and low thermal stabilities. Consequently, heteroleptic precursors have been investigated as alternatives to the existing homoleptic counterparts, leading to the development of several advantageous processes. Here, examples of heteroleptic precursors for ALD processes of transition metals and their oxides are given. Special focus is given to oxides of the rare earths and groups 4 and 5. Trends in the properties of heteroleptic precursors are discussed. Several examples of our recent results are shown, including introduction of novel processes based on amidinate-cyclopentadienyl complexes for ALD of rare earth oxides.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?