Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radiographicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radiographics
Article
Data sources: UnpayWall
Radiographics
Article . 2017 . Peer-reviewed
Data sources: Crossref
Radiographics
Article . 2017
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pulmonary Function Tests for the Radiologist

Authors: Hsiang-Jer, Tseng; Travis S, Henry; Srihari, Veeraraghavan; Pardeep K, Mittal; Brent P, Little;

Pulmonary Function Tests for the Radiologist

Abstract

Pulmonary function tests (PFTs) provide important quantitative information about lung function and can be used to elucidate pathologic conditions responsible for respiratory symptoms, assess the severity and course of disease, and evaluate the patient for suitability and timing for lung transplantation. They are typically used in tandem with chest imaging, along with other ancillary data, to arrive at a specific diagnosis. PFTs may provide the radiologist with clues to the diagnosis and grading of a wide variety of pulmonary diseases. In this review, the authors discuss the clinical use of PFTs, their major components, and important measurements and graphical representations that are essential for understanding and interpreting the results. The key components of PFT panels-static lung volumes, dynamic lung function (spirometry), and diffusion capacity-are explained. The authors present a general algorithmic approach for problem solving, with recognition of common patterns of results (obstructive, restrictive, mixed, nonspecific, and normal). Pulmonary diseases from each of the major patterns and chest imaging are illustrated, and correlations between particular PFT results and disease severity and morphology at imaging are examined. Common pitfalls encountered during interpretation are also highlighted. A basic understanding of the mechanics of PFTs, characteristic patterns in important diseases, and correlation between lung function and imaging findings may assist the radiologist in diagnosis and follow-up of key pulmonary diseases and strengthen the radiologist's role as part of a multidisciplinary diagnostic team. Online supplemental material is available for this article. ©RSNA, 2017.

Related Organizations
Keywords

Lung Diseases, Radiologists, Humans, Respiratory Function Tests

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Average
bronze