Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[Posterior Cingulate Cascading Delay Model for Timing Behavior].

Authors: Tohru Kurotani; Kazuo Okanoya;

[Posterior Cingulate Cascading Delay Model for Timing Behavior].

Abstract

We present a novel model for timing behavior. This model is based on the firing property of neurons in the superficial layers of the posterior cingulate granular retrosplenial cortex (GRS) and does not require a unit-time clock. Suppose that event B occurs N seconds after event A and triggers behavior C. By our behavioral, physiological and anatomical experiments, we found the following facts. 1) Thalamic input carrying sensory information, A, is provided to the superficial layers of the GRS and delayed by the lateral cascading connection within the layers. 2) Hippocampal input (recall information, B) is provided to the deep layers of the GRS. 3) The GRS neurons show timing behavior that is dependent on the trial cycle. 4) Lesioning the GRS impaired the acquisition of trace fear memory and the production of fear-induced freezing behavior, C. Thus we would propose that neural circuits in the GRS play a crucial role in the animal behaviors requiring time discrimination. The question of whether Hebbian learning occurs at the convergent neurons that integrates thalamic and hippocampal information remains unanswered.

Related Organizations
Keywords

Behavior, Synapses, Time Perception, Animals, Brain, Humans, Electrophysiological Phenomena

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?