
pmid: 11826276
▪ Abstract Genetic disorders of mitochondrial fatty acid β-oxidation have been recognized within the last 20 years as important causes of morbidity and mortality, highlighting the physiological significance of fatty acids as an energy source. Although the mammalian mitochondrial fatty acid-oxidizing system was recognized at the beginning of the last century, our understanding of its exact nature remains incomplete, and new components are being identified frequently. Originally described as a four-step enzymatic process located exclusively in the mitochondrial matrix, we now recognize that long-chain-specific enzymes are bound to the inner mitochondrial membrane, and some enzymes are expressed in a tissue-specific manner. Much of our new knowledge of fatty acid metabolism has come from the study of patients who were diagnosed with single-gene autosomal recessive defects, a situation that seems to be further evolving with the emergence of phenotypes determined by combinations of multiple genetic and environmental factors. This review addresses the normal process of mitochondrial fatty acid β-oxidation and discusses the clinical, metabolic, and molecular aspects of more than 20 known inherited diseases of this pathway that have been described to date.
Fatty Acids, Animals, Humans, Oxidation-Reduction, Lipid Metabolism, Inborn Errors
Fatty Acids, Animals, Humans, Oxidation-Reduction, Lipid Metabolism, Inborn Errors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 423 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
