
Structurally and functionally diverse CO dehydrogenases are key components of various energy-yielding pathways in aerobic and anaerobic microbes from the Bacteria and Archaea domains. Aerobic microbes utilize Mo-Fe-flavin CO dehydrogenases to oxidize CO in respiratory pathways. Phototrophic anaerobes grow by converting CO to H2, a process initiating with a CO dehydrogenase that contains nickel and iron-sulfur centers. Acetate-producing anaerobes employ a nickel/iron-sulfur CO dehydrogenase to synthesize acetyl-CoA from a methyl group, CO, and CoA. A similar enzyme is responsible for the cleavage of acetyl-CoA by anaerobic Archaea that obtain energy by fermenting acetate to CH4 and CO2. Acetotrophic sulfate reducers from the Bacteria and Archaea also utilize CO dehydrogenase to cleave acetyl-CoA yielding methyl and carbonyl groups. These microbes obtain energy for growth via a respiratory pathway in which the methyl and carbonyl groups are oxidized to CO2, and sulfate is reduced to sulfide.
Bacteria, Aerobic, Iron-Sulfur Proteins, Bacteria, Anaerobic, Carbon Monoxide, Bacteria, Multienzyme Complexes, Metalloproteins, Aldehyde Oxidoreductases
Bacteria, Aerobic, Iron-Sulfur Proteins, Bacteria, Anaerobic, Carbon Monoxide, Bacteria, Multienzyme Complexes, Metalloproteins, Aldehyde Oxidoreductases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 129 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
