Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CO DEHYDROGENASE

Authors: J G, Ferry;
Abstract

Structurally and functionally diverse CO dehydrogenases are key components of various energy-yielding pathways in aerobic and anaerobic microbes from the Bacteria and Archaea domains. Aerobic microbes utilize Mo-Fe-flavin CO dehydrogenases to oxidize CO in respiratory pathways. Phototrophic anaerobes grow by converting CO to H2, a process initiating with a CO dehydrogenase that contains nickel and iron-sulfur centers. Acetate-producing anaerobes employ a nickel/iron-sulfur CO dehydrogenase to synthesize acetyl-CoA from a methyl group, CO, and CoA. A similar enzyme is responsible for the cleavage of acetyl-CoA by anaerobic Archaea that obtain energy by fermenting acetate to CH4 and CO2. Acetotrophic sulfate reducers from the Bacteria and Archaea also utilize CO dehydrogenase to cleave acetyl-CoA yielding methyl and carbonyl groups. These microbes obtain energy for growth via a respiratory pathway in which the methyl and carbonyl groups are oxidized to CO2, and sulfate is reduced to sulfide.

Related Organizations
Keywords

Bacteria, Aerobic, Iron-Sulfur Proteins, Bacteria, Anaerobic, Carbon Monoxide, Bacteria, Multienzyme Complexes, Metalloproteins, Aldehyde Oxidoreductases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!