
pmid: 11447063
▪ Abstract The development of a tissue-engineered blood vessel substitute has motivated much of the research in the area of cardiovascular tissue engineering over the past 20 years. Several methodologies have emerged for constructing blood vessel replacements with biological functionality. These include cell-seeded collagen gels, cell-seeded biodegradable synthetic polymer scaffolds, cell self-assembly, and acellular techniques. This review details the most recent developments, with a focus on core technologies and construct development. Specific examples are discussed to illustrate both the benefits and shortcomings of each methodology, as well as to underline common themes. Finally, a brief perspective on challenges for the future is presented.
Biomedical Engineering, Animals, Blood Vessels, Humans, Biocompatible Materials, Endothelium, Vascular, Prosthesis Design, Muscle, Smooth, Vascular
Biomedical Engineering, Animals, Blood Vessels, Humans, Biocompatible Materials, Endothelium, Vascular, Prosthesis Design, Muscle, Smooth, Vascular
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 392 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
