
pmid: 11701488
▪ Abstract Robotic technology is enhancing surgery through improved precision, stability, and dexterity. In image-guided procedures, robots use magnetic resonance and computed tomography image data to guide instruments to the treatment site. This requires new algorithms and user interfaces for planning procedures; it also requires sensors for registering the patient’s anatomy with the preoperative image data. Minimally invasive procedures use remotely controlled robots that allow the surgeon to work inside the patient’s body without making large incisions. Specialized mechanical designs and sensing technologies are needed to maximize dexterity under these access constraints. Robots have applications in many surgical specialties. In neurosurgery, image-guided robots can biopsy brain lesions with minimal damage to adjacent tissue. In orthopedic surgery, robots are routinely used to shape the femur to precisely fit prosthetic hip joint replacements. Robotic systems are also under development for closed-chest heart bypass, for microsurgical procedures in ophthalmology, and for surgical training and simulation. Although results from initial clinical experience is positive, issues of clinician acceptance, high capital costs, performance validation, and safety remain to be addressed.
Surgical Procedures, Operative, Biomedical Engineering, Humans, Minimally Invasive Surgical Procedures, Orthopedic Procedures, Robotics, Safety, Thoracic Surgical Procedures, Surgical Equipment
Surgical Procedures, Operative, Biomedical Engineering, Humans, Minimally Invasive Surgical Procedures, Orthopedic Procedures, Robotics, Safety, Thoracic Surgical Procedures, Surgical Equipment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 231 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
