Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Bio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annual Review of Biochemistry
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RIBONUCLEOTIDE REDUCTASES

Authors: A, Jordan; P, Reichard;
Abstract

Ribonucleotide reductases provide the building blocks for DNA replication in all living cells. Three different classes of enzymes use protein free radicals to activate the substrate. Aerobic class I enzymes generate a tyrosyl radical with an iron-oxygen center and dioxygen, class II enzymes employ adenosylcobalamin, and the anaerobic class III enzymes generate a glycyl radical from S-adenosylmethionine and an iron-sulfur cluster. The X-ray structure of the class I Escherichia coli enzyme, including forms that bind substrate and allosteric effectors, confirms previous models of catalytic and allosteric mechanisms. This structure suggests considerable mobility of the protein during catalysis and, together with experiments involving site-directed mutants, suggests a mechanism for radical transfer from one subunit to the other. Despite large differences between the classes, common catalytic and allosteric mechanisms, as well as retention of critical residues in the protein sequence, suggest a similar tertiary structure and a common origin during evolution. One puzzling aspect is that some organisms contain the genes for several different reductases.

Keywords

Evolution, Molecular, Eukaryotic Cells, Allosteric Regulation, Free Radicals, Prokaryotic Cells, Deoxyribonucleotides, Ribonucleotide Reductases, Viruses

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    694
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
694
Top 1%
Top 1%
Top 0.1%
bronze