<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
G protein–coupled receptors (GPCRs) are major regulators of intercellular interactions. They initiate these actions by being activated by a wide variety of natural ligands. Historically, ligands were discovered first, but the advent of molecular biology reversed this trend. Most GPCRs are identified on the basis of their DNA sequences and thus are initially unmatched to known natural ligands. They are termed orphan GPCRs. Discovering their ligands—i.e., “deorphanizing” the GPCRs—gave birth to the field of reverse pharmacology. This review discusses the present status of GPCR deorphanization, presents a few examples of successes and surprises, and highlights difficulties encountered in these efforts.
Animals, Humans, Ligands, Receptors, G-Protein-Coupled
Animals, Humans, Ligands, Receptors, G-Protein-Coupled
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 164 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |