Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Ear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annual Review of Earth and Planetary Sciences
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exoplanet Clouds

Authors: Christiane Helling;

Exoplanet Clouds

Abstract

Clouds, which are common features in Earth's atmosphere, form in atmospheres of planets that orbit other stars than our Sun, in so-called extrasolar planets or exoplanets. Exoplanet atmospheres can be chemically extremely rich. Exoplanet clouds are therefore composed of a mix of materials that changes throughout the atmosphere. They affect atmospheres through element depletion and through absorption and scattering; hence, they have a profound impact on an atmosphere's energy budget. While astronomical observations point us to the presence of extrasolar clouds and make first suggestions on particle size and material composition, we require fundamental and complex modeling work to merge the individual observations into a coherent picture. Part of this work includes developing an understanding of cloud formation in nonterrestrial environments. ▪ Exoplanet atmospheres exhibit a wide chemical diversity that enables the formation of mineral clouds in contrast to the predominant water clouds on Earth. ▪ Clouds consume elements, causing specific atoms and molecules to drop in abundance. Transport processes such as gravitational settling or advection delocalize this process. ▪ Extrasolar planets can have extreme weather conditions where day- and nightside temperatures vary hugely. This affects cloud formation, and hence the cloud coverage and atmosphere's appearance can change dramatically. ▪ Dynamic extrasolar clouds develop intracloud lightning, and electric circuits may occur on more local, smaller scales in giant exoplanets compared to smaller, Earth-like planets with less dramatic hydrodynamics.

Related Organizations
Keywords

Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%
Green
bronze