Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Ast...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-INSU
Article . 2019
Data sources: HAL-INSU
Annual Review of Astronomy and Astrophysics
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accuracy and Precision of Industrial Stellar Abundances

Authors: Jofré, Paula; Heiter, Ulrike; Soubiran, C.;

Accuracy and Precision of Industrial Stellar Abundances

Abstract

There has been an incredibly large investment in obtaining high-resolution stellar spectra for determining chemical abundances of stars. This information is crucial to answer fundamental questions in astronomy by constraining the formation and evolution scenarios of the Milky Way as well as the stars and planets residing in it. We have just entered a new era, in which chemical abundances of FGK-type stars are being produced at industrial scales, and in which the observations, reduction, and analysis of the data are automatically performed by machines. Here, we review the latest human efforts to assess the accuracy and precision of such industrial abundances by providing insights into the steps and uncertainties associated with the process of determining stellar abundances. We also provide a description of current and forthcoming spectroscopic surveys, focusing on their reported abundances and uncertainties. This allows us to identify which elements and spectral lines are best and why. Finally, we make a brief selection of main scientific questions the community is aiming to answer with abundances. ▪ Uncertainties in abundances need to be disentangled into random and systematic components. ▪ Precision can be increased by applying differential or data-driven methods based on accurate data. ▪ High-resolution and signal-to-noise spectra provide fundamental data that can be used to calibrate lower-resolution and signal-to-noise spectra of millions of stars. ▪ Different survey calibration strategies must agree on a common set of reference stars to create data products that are consistent. ▪ Data products provided by individual groups must be published using standard formats to ensure straightforward applicability.

Keywords

[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM], Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Solar and Stellar Astrophysics (astro-ph.SR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 1%
Top 10%
Top 1%
Green
bronze