
handle: 20.500.14243/57569 , 10278/8690
Most of the complexity of common data mining tasks is due to the unknown amount of information contained in the data being mined. The more patterns and corelations are contained in such data, the more resources are needed to extract them. This is confirmed by the fact that in general there is not a single best algorithm for a given data mining task on any possible kind of input dataset. Rather, in order to achieve good performances, strategies and optimizations have to be adopted according to the dataset specific characteristics. For example one typical distinction in transactional databases is between sparse and dense datasets. In this paper we consider Frequent Set Counting as a case study for data mining algorithms. We propose a statistical analysis of the properties of transactional datasets that allows for a characterization of the dataset complexity. We show how such characterization can be used in many fields, from performance prediction to optimization.
Data mining
Data mining
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
