
Program slices are useful in debugging, testing, maintenance, and understanding of programs. The conventional notion of a program slice, the static slice , is the set of all statements that might affect the value of a given variable occurrence. In this paper, we investigate the concept of the dynamic slice consisting of all statements that actually affect the value of a variable occurrence for a given program input. The sensitivity of dynamic slicing to particular program inputs makes it more useful in program debugging and testing than static slicing. Several approaches for computing dynamic slices are examined. The notion of a Dynamic Dependence Graph and its use in computing dynamic slices is discussed. The Dynamic Dependence Graph may be unbounded in length; therefore, we introduce the economical concept of a Reduced Dynamic Dependence Graph, which is proportional in size to the number of dynamic slices arising during the program execution.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 565 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
