
The heterogeneous Web exacerbates IR problems and short user queries make them worse. The contents of web documents are not enough to find good answer documents. Link information and URL information compensates for the insufficiencies of content information. However, static combination of multiple evidences may lower the retrieval performance. We need different strategies to find target documents according to a query type. We can classify user queries as three categories, the topic relevance task, the homepage finding task, and the service finding task. In this paper, a user query classification scheme is proposed. This scheme uses the difference of distribution, mutual information, the usage rate as anchor texts, and the POS information for the classification. After we classified a user query, we apply different algorithms and information for the better results. For the topic relevance task, we emphasize the content information, on the other hand, for the homepage finding task, we emphasize the Link information and the URL information. We could get the best performance when our proposed classification method with the OKAPI scoring algorithm was used.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 159 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
