
A general framework for the denotational treatment of concurrency is introduced. The key idea is the notion of process which is element of a domain obtained as solution of a domain equation in the style as considered previously by Plotkin. We use tools from metric topology as advocated by Nivat to solve this equation, show how operations upon processes can be defined conveniently, and illustrate the approach with the definition of a variety of concepts as encountered in the study of concurrency. Only few proofs of the supporting mathematical theory are given; full proofs will appear in the final version of the paper.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
