Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parallel non-deterministic bottom-up parsing

Authors: Bernard Lang;

Parallel non-deterministic bottom-up parsing

Abstract

The development of translator writing systems and extensible languages has led to a simultaneous development of more efficient and general syntax analyzers, usually for context-free (CF) syntax. Our paper describes a type of parser that can be used with reasonable efficiency for any CF grammar, even one which is ambiguous. Our parser, like most others, is based on the pushdown automaton model, and thus its generality requires it to be non-deterministic (in the automata theoretic sense). An actual implementation of a non-deterministic automaton requires that we explore every computational path that could be followed by the theoretical automaton. This can be done serially [5], following successively every computational path whenever a choice occurs. It leads to the algorithms described in [1], whose time bounds can be exponential functions of the length of the string to be parsed. We can also use a parallel implementation which consists in following “simultaneously” all the possible computational paths whenever a non-deterministic choice occurs. Then we can merge paths that have ceased to be different after a certain point. Those mergings reduce drastically the amount of computation. The best known example is the top-down algorithm described in [2]. The algorithm we describe in the first part of our paper is a basic bottom-up parser, similar to [2] in its organization. Both parsers can be shown to work within time bounds which are at most the cube of the length of the input string, and are often a linear function of it. The space bounds are at most the square of that length. The second part of our paper deals with the optimization of the basic parallel bottom-up algorithm, using the properties of weak precedence relations [3]. The various optimization techniques further reduce the amount of computation required and cause frequent occurrence of a “sparse determinism” phenomenon which allows determination of part of the parse-tree before the non-deterministic analysis is ended. These optimizations also considerably lessen the space requirements. Full details can be found in [6]. The parser is easy to generate for any CF grammar, requiring only the computation of precedence tables. It is slower than most deterministic parsers (on the order of ten times); but all examples we have tried showed it to be more efficient than any other parser having the same generality. We consider that the inefficiency of our parser is reasonable as we intend it as a research tool for the language designer rather than as a part of an industrial compiler. Languages designers, or extensible languages users, are often more preoccupied with semantics than syntax and fix the syntax of their language in a “nice” form only when they have found what kind of semantics it is to represent. So they can easily come up with ambiguous syntax [4]. Our parser parses ambiguous languages and detects ambiguities in programs, thus enabling the programmer to eliminate them.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?