Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1145/566305...
Article . 2002 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

Smooth surface and triangular mesh

comparison of the area, the normals and the unfolding
Authors: Jean-Marie Morvan; Boris Thibert;

Smooth surface and triangular mesh

Abstract

Replacing a smooth surface with a triangular mesh (i.e., a polyedron) "close to it" leads to some errors. The geometric properties of the triangular mesh can be very different from the geometric properties of the smooth surface, even if both surfaces are very close from one another. In this paper, we give examples of "developable" triangular meshes (the discrete Gaussian curvature is equal to 0 at each interior vertex) inscribed in a sphere (whose Gaussian curvature is equal to 1 at every point). However, if we make assumptions on the geometry of the triangular mesh, on the curvature of the smooth surface and on the Hausdorff distance between both surfaces, we get an estimate of several properties of the smooth surface in terms of the properties of the triangular mesh. In particular, we give explicit approximations of the normals and of the area of the smooth surface. Furthermore, if we suppose that the smooth surface is developable (i.e., "isometric" to a surface of the plane), we give an explicit approximation of the "unfolding" of this surface. Just notice that in some of our approximations, we do not suppose that the vertices of the triangular mesh belong to the smooth surface. Oddly, the upper bounds on the errors are better when triangles are right-angled (even if there are small angles): we do not need every angle of the triangular mesh to be quite large. We just need each triangle of the triangular mesh to contain at least one angle whose sine is large enough. Besides, approximations are better if the triangles of the triangular mesh are quite small where the smooth surface has a large curvature. Some proofs will be omitted.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!