
arXiv: 2412.18731
Collaborative recommendation fundamentally involves learning high-quality user and item representations from interaction data. Recently, graph convolution networks (GCNs) have advanced the field by utilizing high-order connectivity patterns in interaction graphs, as evidenced by state-of-the-art methods like PinSage and LightGCN. However, one key limitation has not been well addressed in existing solutions: capturing long-range collaborative filtering signals, which are crucial for modeling user preference. In this work, we propose a new graph transformer (GT) framework— Position-aware Graph Transformer for Recommendation (PGTR), which combines the global modeling capability of Transformer blocks with the local neighborhood feature extraction of GCNs. The key insight is to explicitly incorporate node position and structure information from the user-item interaction graph into GT architecture via several purpose-designed positional encodings. The long-range collaborative signals from the Transformer block are then combined linearly with the local neighborhood features from the GCN backbone to enhance node embeddings for final recommendations. Empirical studies demonstrate the effectiveness of the proposed PGTR method when implemented on various GCN-based backbones across four real-world datasets and the robustness against interaction sparsity as well as noise. Our implementations are available in GitHub: https://github.com/MEICRS/PGTR .
FOS: Computer and information sciences, Information Retrieval (cs.IR), Computer Science - Information Retrieval
FOS: Computer and information sciences, Information Retrieval (cs.IR), Computer Science - Information Retrieval
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
