
arXiv: 2506.00812
Vector search and database systems have become a keystone component in many AI applications. While many prior research has investigated how to accelerate the performance of generic vector search, emerging AI applications require running more sophisticated vector queries efficiently, such as vector search with attribute filters. Unfortunately, recent filtered-ANNS solutions are primarily designed for CPUs, with few exploration and limited performance of filtered-ANNS that take advantage of the massive parallelism offered by GPUs. In this paper, we present VecFlow, a novel high-performance vector filtered search system that achieves unprecedented high throughput and recall while obtaining low latency for filtered-ANNS on GPUs. We propose a novel label-centric indexing and search algorithm that significantly improves the selectivity of ANNS with filters. In addition to algorithmic level optimization, we provide architecture-aware optimizations for VecFlow's functional modules, effectively supporting both small batch and large batch queries, and single-label and multi-label query processing. Experimental results on NVIDIA A100 GPU over several public available datasets validate that VecFlow achieves 5 million QPS for recall 90%, outperforming state-of-the-art CPU-based solutions such as Filtered-DiskANN by up to 135 times. Alternatively, VecFlow can easily extend its support to high recall 99% regime, whereas strong GPU-based baselines plateau at around 80% recall.
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
