Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/371782...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

Smoothed Analysis for Graph Isomorphism

Authors: Michael Anastos; Matthew Kwan 0001; Benjamin Moore;

Smoothed Analysis for Graph Isomorphism

Abstract

There is no known polynomial-time algorithm for graph isomorphism testing, but elementary combinatorial "refinement" algorithms seem to be very efficient in practice. Some philosophical justification is provided by a classical theorem of Babai, Erdős and Selkow: an extremely simple polynomial-time combinatorial algorithm (variously known as "naïve refinement", "naïve vertex classification", "colour refinement" or the "1-dimensional Weisfeiler-Leman algorithm") yields a so-called canonical labelling scheme for "almost all graphs". More precisely, for a typical outcome of a random graph $G(n,1/2)$, this simple combinatorial algorithm assigns labels to vertices in a way that easily permits isomorphism-testing against any other graph. We improve the Babai-Erdős-Selkow theorem in two directions. First, we consider randomly perturbed graphs, in accordance with the smoothed analysis philosophy of Spielman and Teng: for any graph $G$, naïve refinement becomes effective after a tiny random perturbation to $G$ (specifically, the addition and removal of $O(n\log n)$ random edges). Actually, with a twist on naïve refinement, we show that $O(n)$ random additions and removals suffice. These results significantly improve on previous work of Gaudio-Rácz-Sridhar, and are in certain senses best-possible. Second, we complete a long line of research on canonical labelling of random graphs: for any $p$ (possibly depending on $n$), we prove that a random graph $G(n,p)$ can typically be canonically labelled in polynomial time. This is most interesting in the extremely sparse regime where $p$ has order of magnitude $c/n$; denser regimes were previously handled by Bollobás, Czajka-Pandurangan, and Linial-Mosheiff. Our proof also provides a description of the automorphism group of a typical outcome of $G(n,p_n)$ (slightly correcting a prediction of Linial-Mosheiff).

Keywords

FOS: Computer and information sciences, Computational Complexity, Data Structures and Algorithms, Combinatorics, FOS: Mathematics, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO), Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green