Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parameterized Hardware Verification Through A Term-level Generalized Symbolic Trajectory Evaluation And Its Linkage With Concrete Hardware Verification At Netlist Level

Authors: Yongjian Li; Zhenghai Cai; Bow-Yaw Wang; Yongxin Zhao;

Parameterized Hardware Verification Through A Term-level Generalized Symbolic Trajectory Evaluation And Its Linkage With Concrete Hardware Verification At Netlist Level

Abstract

This article proposes a term-level generalized symbolic trajectory evaluation (GSTE) to tackle parameterized hardware verification. We develop a theorem-proving technique for parameterized GSTE verification. In our technique, a constraint is associated with a node in GSTE graphs to specify reachable states. Generalized inductive relations between nodes of GSTE graphs are formulated; instantaneous implications are formalized on the edges of GSTE graphs. Based on this formalization, parameterized GSTE are verified. We moreover formalize our techniques in Isabelle. Furthermore, once a parametrized design is verified at the term level, we can convert the generally parameterized invariants into concrete ones, which can be used to verify a synthesized netlist of an instance of the parameterized design at the Boolean level. We demonstrate the effectiveness of our techniques in case studies. Interestingly, subtleties between different implementations of FIFOs are discovered by our parameterized verification, although these circuits have been extensively studied previously.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!