Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/371225...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY SA
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SEvoBench: A C++ Framework for Evolutionary Single-Objective Optimization Benchmarking

Authors: Yongkang Yang; Jian Zhao; Tengfei Yang;

SEvoBench: A C++ Framework for Evolutionary Single-Objective Optimization Benchmarking

Abstract

We present SEvoBench, a modern C++ framework for evolutionary computation (EC), specifically designed to systematically benchmark evolutionary single-objective optimization algorithms. The framework features modular implementations of Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms, organized around three core components: (1) algorithm construction with reusable modules, (2) efficient benchmark problem suites, and (3) parallel experimental analysis. Experimental evaluations demonstrate the framework's superior performance in benchmark testing and algorithm comparison. Case studies further validate its capabilities in algorithm hybridization and parameter analysis. Compared to existing frameworks, SEvoBench demonstrates three key advantages: (i) highly efficient and reusable modular implementations of PSO and DE algorithms, (ii) accelerated benchmarking through parallel execution, and (iii) enhanced computational efficiency via SIMD (Single Instruction Multiple Data) vectorization for large-scale problems.

9 pages, 9 figures

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Optimization and Control (math.OC), FOS: Mathematics, Computer Science - Neural and Evolutionary Computing, Computer Science - Mathematical Software, Neural and Evolutionary Computing (cs.NE), Mathematics - Optimization and Control, Mathematical Software (cs.MS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green