
arXiv: 2411.02716
We consider the formulation of a symbolic execution (SE) procedure for functional programs that interact with effectful, opaque libraries. Our procedure allows specifications of libraries and abstract data type (ADT) methods that are expressed in Linear Temporal Logic over Finite Traces (LTL f ), interpreting them as symbolic finite automata (SFAs) to enable intelligent specification-guided path exploration in this setting. We apply our technique to facilitate the falsification of complex data structure safety properties in terms of effectful operations made by ADT methods on underlying opaque representation type(s). Specifications naturally characterize admissible traces of temporally-ordered events that ADT methods (and the library methods they depend upon) are allowed to perform. We show how to use these specifications to construct feasible symbolic input states for the corresponding methods, as well as how to encode safety properties in terms of this formalism. More importantly, we incorporate the notion of symbolic derivatives , a mechanism that allows the SE procedure to intelligently underapproximate the set of precondition states it needs to explore, based on the automata structures latent in the provided specifications and the safety property that is to be falsified. Intuitively, derivatives enable symbolic execution to exploit temporal constraints defined by trace-based specifications to quickly prune unproductive paths and discover feasible error states. Experimental results on a wide-range of challenging ADT implementations demonstrate the effectiveness of our approach.
D.3.0, FOS: Computer and information sciences, Computer Science - Programming Languages, F.3.1, D.3.0; F.3.1, Programming Languages (cs.PL)
D.3.0, FOS: Computer and information sciences, Computer Science - Programming Languages, F.3.1, D.3.0; F.3.1, Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
