Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/370171...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RU-AI: A Large Multimodal Dataset for Machine-Generated Content Detection

Authors: Liting Huang; Zhihao Zhang; Yiran Zhang; Xiyue Zhou; Shoujin Wang;

RU-AI: A Large Multimodal Dataset for Machine-Generated Content Detection

Abstract

The recent generative AI models' capability of creating realistic and human-like content is significantly transforming the ways in which people communicate, create and work. The machine-generated content is a double-edged sword. On one hand, it can benefit the society when used appropriately. On the other hand, it may mislead people, posing threats to the society, especially when mixed together with natural content created by humans. Hence, there is an urgent need to develop effective methods to detect machine-generated content. However, the lack of aligned multimodal datasets inhibited the development of such methods, particularly in triple-modality settings (e.g., text, image, and voice). In this paper, we introduce RU-AI, a new large-scale multimodal dataset for robust and effective detection of machine-generated content in text, image and voice. Our dataset is constructed on the basis of three large publicly available datasets: Flickr8K, COCO and Places205, by adding their corresponding AI duplicates, resulting in a total of 1,475,370 instances. In addition, we created an additional noise variant of the dataset for testing the robustness of detection models. We conducted extensive experiments with the current SOTA detection methods on our dataset. The results reveal that existing models still struggle to achieve accurate and robust detection on our dataset. We hope that this new data set can promote research in the field of machine-generated content detection, fostering the responsible use of generative AI. The source code and datasets are available at https://github.com/ZhihaoZhang97/RU-AI.

Accepted by WWW'25 Resource Track

Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green