
This work reviews how database theory uses tractable circuit classes from knowledge compilation. We present relevant query evaluation tasks, and notions of tractable circuits. We then show how these tractable circuits can be used to address database tasks. We first focus on Boolean provenance and its applications for aggregation tasks, in particular probabilistic query evaluation. We study these for Monadic Second Order (MSO) queries on trees, and for safe Conjunctive Queries (CQs) and Union of Conjunctive Queries (UCQs). We also study circuit representations of query answers, and their applications to enumeration tasks: both in the Boolean setting (for MSO) and the multivalued setting (for CQs and UCQs).
FOS: Computer and information sciences, Computer Science - Databases, [INFO]Computer Science [cs], Databases (cs.DB), [INFO] Computer Science [cs], 004
FOS: Computer and information sciences, Computer Science - Databases, [INFO]Computer Science [cs], Databases (cs.DB), [INFO] Computer Science [cs], 004
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
