<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Software systems evolve more and more in complex and changing environments, often requiring runtime adaptation to best deliver their services. When self-adaptation is the main concern of the system, a manual implementation of the underlying feedback loop and trade-off analysis may be desirable. However, the required expertise and substantial development effort make such implementations prohibitively difficult when it is only a secondary concern for the given domain. In this paper, we present ASOS, a metalanguage abstracting the runtime adaptation concern of a given domain in the behavioral semantics of a domain-specific language (DSL), freeing the language user from implementing it from scratch for each system in the domain. We demonstrate our approach on RobLANG, a procedural DSL for robotics, where we abstract a recurrent energy-saving behavior depending on the context. We provide formal semantics for ASOS and pave the way for checking properties such as determinism, completeness, and termination of the resulting self-adaptable language. We provide first results on the performance of our approach compared to a manual implementation of this self-adaptable behavior. We demonstrate, for RobLANG, that our approach provides suitable abstractions for specifying sound adaptive operational semantics while being more efficient.
DSL, Operational Semantics, [INFO.INFO-SE] Computer Science [cs]/Software Engineering [cs.SE], Self-Adaptation, 004
DSL, Operational Semantics, [INFO.INFO-SE] Computer Science [cs]/Software Engineering [cs.SE], Self-Adaptation, 004
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |