
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The Gaussian process is a powerful and flexible technique for interpolating spatiotemporal data, especially with its ability to capture complex trends and uncertainty from the input signal. This chapter describes Gaussian processes as an interpolation technique for geospatial trajectories. A Gaussian process models measurements of a trajectory as coming from a multidimensional Gaussian, and it produces for each timestamp a Gaussian distribution as a prediction. We discuss elements that need to be considered when applying Gaussian process to trajectories, common choices for those elements, and provide a concrete example of implementing a Gaussian process.
SpatialGems workshop 2021, 7 pages
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
