<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We construct a classical oracle relative to which $\mathsf{P} = \mathsf{NP}$ yet single-copy secure pseudorandom quantum states exist. In the language of Impagliazzo's five worlds, this is a construction of pseudorandom states in "Algorithmica," and hence shows that in a black-box setting, quantum cryptography based on pseudorandom states is possible even if one-way functions do not exist. As a consequence, we demonstrate that there exists a property of a cryptographic hash function that simultaneously (1) suffices to construct pseudorandom states, (2) holds for a random oracle, and (3) is independent of $\mathsf{P}$ vs. $\mathsf{NP}$ in the black-box setting. We also introduce a conjecture that would generalize our results to multi-copy secure pseudorandom states. We build on the recent construction by Aaronson, Ingram, and Kretschmer (CCC 2022) of an oracle relative to which $\mathsf{P} = \mathsf{NP}$ but $\mathsf{BQP} \neq \mathsf{QCMA}$, based on hardness of the OR $\circ$ Forrelation problem. Our proof also introduces a new discretely-defined variant of the Forrelation distribution, for which we prove pseudorandomness against $\mathsf{AC^0}$ circuits. This variant may be of independent interest.
35 pages. V2: minor writing improvements
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, Computer Science - Cryptography and Security, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph), Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, Computer Science - Cryptography and Security, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph), Cryptography and Security (cs.CR)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |