
arXiv: 2210.06454
handle: 20.500.11850/584642
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation. Specifically, for classes of search problems, we show that the following statements hold, relative to a random oracle: (a) $\mathsf{BPP}^{\mathsf{QNC}^{\mathsf{BPP}}} \neq \mathsf{BQP}$. This refutes Jozsa's conjecture [QIP 05] in the random oracle model. As a result, this gives the first instantiatable separation between the classes by replacing the oracle with a cryptographic hash function, yielding a resolution to one of Aaronson's ten semi-grand challenges in quantum computing. (b) $\mathsf{BPP}^{\mathsf{QNC}} \nsubseteq \mathsf{QNC}^{\mathsf{BPP}}$ and $\mathsf{QNC}^{\mathsf{BPP}} \nsubseteq \mathsf{BPP}^{\mathsf{QNC}}$. This shows that there is a subtle interplay between classical computation and shallow quantum computation. In fact, for the second separation, we establish that, for some problems, the ability to perform adaptive measurements in a single shallow quantum circuit, is more useful than the ability to perform polynomially many shallow quantum circuits without adaptive measurements. (c) There exists a 2-message proof of quantum depth protocol. Such a protocol allows a classical verifier to efficiently certify that a prover must be performing a computation of some minimum quantum depth. Our proof of quantum depth can be instantiated using the recent proof of quantumness construction by Yamakawa and Zhandry [STOC 22].
arXiv
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, Computer Science - Cryptography and Security, Quantum Physics (quant-ph); Computational Complexity (cs.CC); Cryptography and Security (cs.CR); FOS: Physical sciences; FOS: Computer and information sciences, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph), Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, Computer Science - Cryptography and Security, Quantum Physics (quant-ph); Computational Complexity (cs.CC); Cryptography and Security (cs.CR); FOS: Physical sciences; FOS: Computer and information sciences, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph), Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
