Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Challenges of Detecting Side-Channel Attacks in SGX

Authors: Jiang, Jianyu; Soriente, Claudio; Karame, Ghassan;

On the Challenges of Detecting Side-Channel Attacks in SGX

Abstract

Existing tools to detect side-channel attacks on Intel SGX are grounded on the observation that attacks affect the performance of the victim application. As such, all detection tools monitor the potential victim and raise an alarm if the witnessed performance (in terms of runtime, enclave interruptions, cache misses, etc.) is out of the ordinary. In this paper, we show that monitoring the performance of enclaves to detect side-channel attacks may not be effective. Our core intuition is that all monitoring tools are geared towards an adversary that interferes with the victim's execution in order to extract the most number of secret bits (e.g., the entire secret) in one or few runs. They cannot, however, detect an adversary that leaks smaller portions of the secret - as small as a single bit - at each execution of the victim. In particular, by minimizing the information leaked at each run, the impact of any side-channel attack on the application's performance is significantly lowered - ensuring that the detection tool does not detect an attack. By repeating the attack multiple times, each time on a different part of the secret, the adversary can recover the whole secret and remain undetected. Based on this intuition, we adapt known attacks leveraging page-tables and L3 cache to bypass existing detection mechanisms. We show experimentally how an attacker can successfully exfiltrate the secret key used in an enclave running various cryptographic routines of libgcrypt. Beyond cryptographic libraries, we also show how to compromise the predictions of enclaves running decision-tree routines of OpenCV. Our evaluation results suggest that performance-based detection tools do not deter side-channel attacks on SGX enclaves and that effective detection mechanisms are yet to be designed.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green