Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/353113...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temporal Team Semantics Revisited

Authors: Gutsfeld, Jens Oliver; Meier, Arne; Ohrem, Christoph; Virtema, Jonni;

Temporal Team Semantics Revisited

Abstract

Temporal logics have been studied as an approach to the specification of hyperproperties, resulting in the conception of "hyperlogics". With a few recent exceptions, the hyperlogics thus far developed can only relate different traces of a transition system synchronously. However, important information is contained in the relation between different points in their asynchronous interaction. To specify such "asynchronous hyperproperties", new trace quantifier based hyperlogics have been developed. Yet, hyperlogics with trace quantification cannot express certain requirements that describe the relationships between all executions of a system. Also, these logics induce model checking problems (MC) with prohibitively high complexity costs in the number of quantifier alternations. We study an alternative approach to asynchronous hyperproperties by introducing a novel foundation of temporal team semantics. Team semantics is a logical framework that specifies properties of sets of traces of unbounded size directly, and thus does not have the same limitation as the quantifier based logics mentioned above. We consider temporal team logics which employ quantification over so-called "time evaluation functions" (TEFs) controlling the asynchronous progress of traces instead of quantification over traces. TEFs constitute a novel approach to defining expressive logics for hyperproperties where diverse asynchronous interactions between computations can be formalised and enforced. We show embeddings of synchronous TeamLTL into our new logics. We show that MC for some TeamCTL fragment is highly undecidable. We present a translation from TeamCTL* to Alternating Asynchronous Büchi Automata, and obtain decidability results for the path checking problem and restrictions of MC and SAT. Our translation constitutes the first approach to team semantics based on automata-theoretic methods.

extended version

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Computer Science - Computational Complexity, Computational Complexity (cs.CC), Logic in Computer Science (cs.LO)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid