Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Management Science
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

When is Assortment Optimization Optimal?

Authors: Will Ma;

When is Assortment Optimization Optimal?

Abstract

Assortment optimization concerns the problem of selling items with fixed prices to a buyer who will purchase at most one. Typically, retailers select a subset of items, corresponding to an “assortment” of brands to carry, and make each selected item available for purchase at its brand-recommended price. Despite the tremendous importance in practice, the best method for selling these fixed-price items is not well understood, as retailers have begun experimenting with making certain items available only through a lottery. In this paper, we analyze the maximum possible revenue that can be earned in this setting, given that the buyer’s preference is private, but drawn from a known distribution. In particular, we introduce a Bayesian mechanism-design problem where the buyer has a random ranking over fixed-price items and an outside option, and the seller optimizes a (randomized) allocation of up to one item. We show that allocations corresponding to assortments are suboptimal in general, but under many commonly studied Bayesian priors for buyer rankings, such as the Multinomial Logit and Markov Chain choice models, assortments are, in fact, optimal. Therefore, this large literature on assortment optimization has much greater significance than appreciated before—it is not only computing optimal assortments; it is computing the economic limit of the seller’s revenue for selling these fixed-price substitute items. We derive several further results—a more general sufficient condition for assortments being optimal that captures choice models beyond Markov Chain; a proof that Nested Logit choice models cannot be captured by Markov Chain, but can, to some extent, be captured by our condition; and suboptimality gaps for assortments when our condition does not hold. Finally, we show that our mechanism-design problem provides the tightest-known Linear Programming relaxation for assortment optimization under the ranking distribution model. This paper was accepted by Itai Ashlagi, revenue management and market analytics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.4471 .

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Computer Science and Game Theory, Computer Science and Game Theory (cs.GT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green