
arXiv: 2205.07850
Most cloud services and distributed applications rely on hashing algorithms that allow dynamic scaling of a robust and efficient hash table. Examples include AWS, Google Cloud and BitTorrent. Consistent and rendezvous hashing are algorithms that minimize key remapping as the hash table resizes. While memory errors in large-scale cloud deployments are common, neither algorithm offers both efficiency and robustness. Hyperdimensional Computing is an emerging computational model that has inherent efficiency, robustness and is well suited for vector or hardware acceleration. We propose Hyperdimensional (HD) hashing and show that it has the efficiency to be deployed in large systems. Moreover, a realistic level of memory errors causes more than 20% mismatches for consistent hashing while HD hashing remains unaffected.
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
