
arXiv: 2204.12294
False information has a significant negative influence on individuals as well as on the whole society. Especially in the current COVID-19 era, we witness an unprecedented growth of medical misinformation. To help tackle this problem with machine learning approaches, we are publishing a feature-rich dataset of approx. 317k medical news articles/blogs and 3.5k fact-checked claims. It also contains 573 manually and more than 51k automatically labelled mappings between claims and articles. Mappings consist of claim presence, i.e., whether a claim is contained in a given article, and article stance towards the claim. We provide several baselines for these two tasks and evaluate them on the manually labelled part of the dataset. The dataset enables a number of additional tasks related to medical misinformation, such as misinformation characterisation studies or studies of misinformation diffusion between sources.
11 pages, 4 figures, SIGIR 2022 Resource paper track
FOS: Computer and information sciences, Computer Science - Computers and Society, Computer Science - Machine Learning, Computer Science - Computation and Language, Computers and Society (cs.CY), Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Computers and Society, Computer Science - Machine Learning, Computer Science - Computation and Language, Computers and Society (cs.CY), Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
