Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Kraken

Adaptive Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms
Authors: Vivek M. Bhasi; Jashwant Raj Gunasekaran; Prashanth Thinakaran; Cyan Subhra Mishra; Mahmut Taylan Kandemir; Chita R. Das;
Abstract

The growing popularity of microservices has led to the proliferation of online cloud service-based applications, which are typically modelled as Directed Acyclic Graphs (DAGs) comprising of tens to hundreds of microservices. The vast majority of these applications are user-facing, and hence, have stringent SLO requirements. Serverless functions, having short resource provisioning times and instant scalability, are suitable candidates for developing such latency-critical applications. However, existing serverless providers are unaware of the workflow characteristics of application DAGs, leading to container over-provisioning in many cases. This is further exacerbated in the case of dynamic DAGs, where the function chain for an application is not known a priori. Motivated by these observations, we propose Kraken, a workflow-aware resource management framework that minimizes the number of containers provisioned for an application DAG while ensuring SLO-compliance. We design and implement Kraken on OpenFaaS and evaluate it on a multi-node Kubernetes-managed cluster. Our extensive experimental evaluation using DeathStarbench workload suite and real-world traces demonstrates that Kraken spawns up to 76% fewer containers, thereby improving container utilization and saving cluster-wide energy by up to 4x and 48%, respectively, when compared to state-of-the art schedulers employed in serverless platforms.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!