Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

ITSLF: Inter-Thread Store-to-Load Forwardingin Simultaneous Multithreading

Authors: Josué Feliu; Alberto Ros 0001; Manuel E. Acacio; Stefanos Kaxiras;

ITSLF: Inter-Thread Store-to-Load Forwardingin Simultaneous Multithreading

Abstract

In this paper, we argue that, for a class of fine-grain, synchronization-intensive, parallel workloads, it is advantageous to consolidate synchronization and communication as much as possible among the threads of simultaneous multithreading (SMT) cores. While, today, the shared L1 is the closest coherent level where synchronization and communication between SMT threads can take place, we observe that there is an even closer shared level, entirely inside a single core. This level comprises the load queues (LQ) and store queues (SQ) / store buffers (SB) of the SMT threads and to the best of our knowledge it has never been used as such. The reason is that if we allow communication of different SMT threads via their LQs and SQs/SBs, i.e., inter-thread store-to-load forwarding (ITSLF), we violate write atomicity with respect to the outside world, beyond the acceptable model of read-own-write-early multiple-copy atomicity (rMCA). The key insight of our work is that we can accelerate synchronization and communication among SMT threads with inter-thread store-to-load forwarding, without affecting the memory model—in particular without violating rMCA. We demonstrate how we can achieve this entirely through speculative interactions between LQs and SQs/SBs of different threads, while ensuring deadlock-free execution. Without changing the architectural model, the ISA, or the software, and without adding extra hardware in the form of a specialized accelerator, our insight enables a new design point for a standard architecture. We demonstrate that with ITSLF, workloads scale better on a single 8-way SMT core (with the resources of a single-threaded core) than on a baseline SMT (with or without optimizations), or on 8 single-threaded cores.

Keywords

Simultaneous Multithreading, Multiple-Copy Atomicity, Store-to-Load Forwarding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green