Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Grammar-agnostic symbolic execution by token symbolization

Authors: Weiyu Pan; Zhenbang Chen; Guofeng Zhang 0005; Yunlai Luo; Yufeng Zhang 0001; Ji Wang 0001;

Grammar-agnostic symbolic execution by token symbolization

Abstract

Parsing code exists extensively in software. Symbolic execution of complex parsing programs is challenging. The inputs generated by the symbolic execution using the byte-level symbolization are usually rejected by the parsing program, which dooms the effectiveness and efficiency of symbolic execution. Complex parsing programs usually adopt token-based input grammar checking. A token sequence represents one case of the input grammar. Based on this observation, we propose grammar-agnostic symbolic execution that can automatically generate token sequences to test complex parsing programs effectively and efficiently. Our method's key idea is to symbolize tokens instead of input bytes to improve the efficiency of symbolic execution. Technically, we propose a novel two-stage algorithm: the first stage collects the byte-level constraints of token values; the second stage employs token symbolization and the constraints collected in the first stage to generate the program inputs that are more possible to pass the parsing code. We have implemented our method on a Java Pathfinder (JPF) based concolic execution engine. The results of the extensive experiments on real-world Java parsing programs demonstrate the effectiveness and efficiency in testing complex parsing programs. Our method detects 6 unknown bugs in the benchmark programs and achieves orders of magnitude speedup to find the same bugs.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!