
arXiv: 2003.07529
Cytology is a branch of pathology that deals with the microscopic examination of cells for diagnosis of carcinoma or inflammatory conditions. In the present work, the term cytology is used to indicate solid organ cytology. Automation in cytology started in the early 1950s with an aim to reduce manual efforts in the diagnosis of cancer. The influx of intelligent systems with high computational power and improved specimen collection techniques helped to achieve technological heights in the cytology automation process. In the present survey, we focus on image analysis techniques paving the way to automation in cytology. We take a short tour of 17 types of solid organ cytology to explore various segmentation and/or classification techniques that evolved during the past three decades to automate cytology image analysis. It is observed that most of the works are aligned toward three types of cytology: Cervical, Breast, and Respiratory tract cytology. These are discussed elaborately in the article. Commercial systems developed during the period are also summarized to comprehend the overall growth in respective domains. Finally, we discuss different state-of-the-art methods and related challenges to provide prolific and competent future research directions in bringing cytology-based commercial systems into the mainstream.
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
