Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/344238...
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linguistically-Enriched and Context-AwareZero-shot Slot Filling

Authors: Fuad Jamour; Vagelis Hristidis; A. B. Siddique;

Linguistically-Enriched and Context-AwareZero-shot Slot Filling

Abstract

Slot filling is identifying contiguous spans of words in an utterance that correspond to certain parameters (i.e., slots) of a user request/query. Slot filling is one of the most important challenges in modern task-oriented dialog systems. Supervised learning approaches have proven effective at tackling this challenge, but they need a significant amount of labeled training data in a given domain. However, new domains (i.e., unseen in training) may emerge after deployment. Thus, it is imperative that these models seamlessly adapt and fill slots from both seen and unseen domains -- unseen domains contain unseen slot types with no training data, and even seen slots in unseen domains are typically presented in different contexts. This setting is commonly referred to as zero-shot slot filling. Little work has focused on this setting, with limited experimental evaluation. Existing models that mainly rely on context-independent embedding-based similarity measures fail to detect slot values in unseen domains or do so only partially. We propose a new zero-shot slot filling neural model, LEONA, which works in three steps. Step one acquires domain-oblivious, context-aware representations of the utterance word by exploiting (a) linguistic features; (b) named entity recognition cues; (c) contextual embeddings from pre-trained language models. Step two fine-tunes these rich representations and produces slot-independent tags for each word. Step three exploits generalizable context-aware utterance-slot similarity features at the word level, uses slot-independent tags, and contextualizes them to produce slot-specific predictions for each word. Our thorough evaluation on four diverse public datasets demonstrates that our approach consistently outperforms the SOTA models by 17.52%, 22.15%, 17.42%, and 17.95% on average for unseen domains on SNIPS, ATIS, MultiWOZ, and SGD datasets, respectively.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Green
hybrid