
arXiv: 2004.13820
Estimating the semantic similarity between text data is one of the challenging and open research problems in the field of Natural Language Processing (NLP). The versatility of natural language makes it difficult to define rule-based methods for determining semantic similarity measures. To address this issue, various semantic similarity methods have been proposed over the years. This survey article traces the evolution of such methods beginning from traditional NLP techniques such as kernel-based methods to the most recent research work on transformer-based models, categorizing them based on their underlying principles as knowledge-based, corpus-based, deep neural network–based methods, and hybrid methods. Discussing the strengths and weaknesses of each method, this survey provides a comprehensive view of existing systems in place for new researchers to experiment and develop innovative ideas to address the issue of semantic similarity.
FOS: Computer and information sciences, Computer Science - Computation and Language, I.2.7, Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval
FOS: Computer and information sciences, Computer Science - Computation and Language, I.2.7, Computation and Language (cs.CL), Information Retrieval (cs.IR), Computer Science - Information Retrieval
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 245 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
