
arXiv: 2004.13574
How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups—the studies on unbiased learning algorithms with logged data, namely, the offline unbiased learning, and the studies on unbiased parameters estimation with real-time user interactions, namely, the online learning to rank. While their definitions of unbiasness are different, these two types of ULTR algorithms share the same goal—to find the best models that rank documents based on their intrinsic relevance or utility. However, most studies on offline and online unbiased learning to rank are carried in parallel without detailed comparisons on their background theories and empirical performance. In this article, we formalize the task of unbiased learning to rank and show that existing algorithms for offline unbiased learning and online learning to rank are just the two sides of the same coin. We evaluate eight state-of-the-art ULTR algorithms and find that many of them can be used in both offline settings and online environments with or without minor modifications. Further, we analyze how different offline and online learning paradigms would affect the theoretical foundation and empirical effectiveness of each algorithm on both synthetic and real search data. Our findings provide important insights and guidelines for choosing and deploying ULTR algorithms in practice.
FOS: Computer and information sciences, Computer Science - Machine Learning, Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Information Retrieval (cs.IR), Computer Science - Information Retrieval, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
