
doi: 10.1145/3423184
We present fast implementations of linear interpolation operators for piecewise linear functions and multi-dimensional look-up tables. These operators are common for efficient transformations in image processing and are the core operations needed for lattice models like deep lattice networks, a popular machine learning function class for interpretable, shape-constrained machine learning. We present new strategies for an efficient compiler-based solution using MLIR to accelerate linear interpolation. For real-world machine-learned multi-layer lattice models that use multidimensional linear interpolation, we show these strategies run 5-10× faster on a standard CPU compared to an optimized C++ interpreter implementation.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
