
doi: 10.1145/3323995
The purpose of the Mars rover is in its name---to rove, explore, study Martian geology, look for signs of water, look for signs of life (past or present), etc. However, achieving these and other objectives requires putting the rover down on a suitable landing site, i.e. a site suitable for searching for the desired information and safe to land and function without hindrance or breaking down. The data for making these decisions comes from prior Mars missions. Selecting a suitable landing site is a complex process typically taking several years. Researchers at MIT's Kavli Institute for Astrophysics and Space Research prototyped a new software that can help NASA mission planners to more rapidly and reliably find landing sites, potentially reducing the total time required to weeks. In this interview, Victor Pankratius, leader of the research team, shares some insight into the project.
ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004, 004
ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
