<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11824/1017
Sentiment analysis consists of evaluating opinions or statements from the analysis of text. Among the methods used to estimate the degree in which a text expresses a given sentiment, are those based on Gaussian Processes. However, traditional Gaussian Processes methods use a predefined kernel with hyperparameters that can be tuned but whose structure can not be adapted. In this paper, we propose the application of Genetic Programming for evolving Gaussian Process kernels that are more precise for sentiment analysis. We use use a very flexible representation of kernels combined with a multi-objective approach that simultaneously considers two quality metrics and the computational time spent by the kernels. Our results show that the algorithm can outperform Gaussian Processes with traditional kernels for some of the sentiment analysis tasks considered.
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Statistics - Machine Learning, Machine Learning (stat.ML), Computation and Language (cs.CL), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Statistics - Machine Learning, Machine Learning (stat.ML), Computation and Language (cs.CL), Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |