<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Stochastic population-based nature-inspired metaheuristics have been proven as a robust tool for mining association rules. These algorithms are very scalable, as well as very fast compared with some deterministic ones that search for solutions exhaustively. Typically, algorithms for association rule mining identify a lot of rules depending, on the transaction database and number of attributes. Therefore, evaluating these rules is very complex. On the other hand, establishing the relationships between discovered association rules can be considered as a very hard problem that cannot easily be solved manually. In this paper, we propose a new algorithm based on stochastic population-based nature-inspired metaheuristics for discovering dependencies among association rules.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |