Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1145/3319...
Conference object
License: ACM Copyright Policies
Data sources: Sygma
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combining bio-inspired meta-heuristics and novelty search for community detection over evolving graph streams

Authors: Osaba, Eneko; Ser, Javier Del; Panizo, Angel; Camacho, David; Galvez, Akemi; Iglesias, Andres;

Combining bio-inspired meta-heuristics and novelty search for community detection over evolving graph streams

Abstract

Finding communities of interrelated nodes is a learning task that often holds in problems that can be modeled as a graph. In any case, detecting an optimal partition in a graph is highly time-consuming and complex. For this reason, the implementation of search-based metaheuristics arises as an alternative for addressing these problems. This manuscript focuses on optimally partitioning dynamic network instances, in which the connections between vertices change dynamically along time. Specifically, the application of Novelty Search mechanism for solving the problem of finding communities in dynamic networks is studied in this paper. For this goal, this procedure has been embedded in the search process undertaken by three different bio-inspired meta-heuristic schemes: Bat Algorithm, Firefly Algorithm and Particle Swarm Optimization. All these methods have been properly adapted for dealing with this discrete and dynamic problem, using a reformulated expression of the modularity coefficient as its fitness function. A thorough experimentation has been conducted using a benchmark composed by 12 synthetically created instances, with the main objective of analyzing the performance of the proposed Novelty Search mechanism when facing this problem. In light of the outperforming behavior of our approach and its relevance dictated by two different statistical tests, we conclude that Novelty Search is a promising procedure for finding communities in evolving graph data.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?