Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AI Meets AI

Leveraging Query Executions to Improve Index Recommendations
Authors: Bailu Ding; Sudipto Das; Ryan Marcus; Wentao Wu; Surajit Chaudhuri; Vivek R. Narasayya;

AI Meets AI

Abstract

State-of-the-art index tuners rely on query optimizer's cost estimates to search for the index configuration with the largest estimated execution cost improvement`. Due to well-known limitations in optimizer's estimates, in a significant fraction of cases, an index estimated to improve a query's execution cost, e.g., CPU time, makes that worse when implemented. Such errors are a major impediment for automated indexing in production systems. We observe that comparing the execution cost of two plans of the same query corresponding to different index configurations is a key step during index tuning. Instead of using optimizer's estimates for such comparison, our key insight is that formulating it as a classification task in machine learning results in significantly higher accuracy. We present a study of the design space for this classification problem. We further show how to integrate this classifier into the state-of-the-art index tuners with minimal modifications, i.e., how artificial intelligence (AI) can benefit automated indexing (AI). Our evaluation using industry-standard benchmarks and a large number of real customer workloads demonstrates up to 5x reduction in the errors in identifying the cheaper plan in a pair, which eliminates almost all query execution cost regressions when the model is used in index tuning.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!