<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In recent decades, we observed the rapid growth of several big data platforms. Each of them is designed for specific demands. For instance, Spark can efficiently process iterative queries, while Storm is designed for in-memory processing. In this context, the complexity of these distributed systems make it much harder to develop rigorous cost models for query optimization problems. This paper aims to address two problems of the query optimization process: cost estimation and index selection. The cost estimation problem predicts the best execution plan by measuring the cost of alternative query plans. The index selection problem determines the most suitable indexing method with a given dataset. Both problems require the development of a complex function that measures the cost or suitability of alternatives to a specific dataset. Therefore, we employ deep learning to solve those problems due to its capability of learning complicated models. We first address a simple form of cost estimation problem: selectivity estimation. Our preliminary results show that our deep learning models work efficiently with the accuracy of selectivity estimation up to 97%.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |