Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis

Authors: Minseok Jeon; Sehun Jeong; Sung Deok Cha; Hakjoo Oh;

A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis

Abstract

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis. One major challenge in static program analysis is a substantial amount of manual effort required for tuning the analysis performance. Recently, data-driven program analysis has emerged to address this challenge by automatically adjusting the analysis based on data through a learning algorithm. Although this new approach has proven promising for various program analysis tasks, its effectiveness has been limited due to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses Boolean formulas over atomic features and therefore is able to express nonlinear combinations of program properties. A key technical challenge is to efficiently determine a set of good Boolean formulas, as brute-force search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns Boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers: context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results show that our automated technique significantly improves the performance of the state-of-the-art techniques including ones hand-crafted by human experts.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!